next up previous
Next: Bogolyubov transformation of the Up: Canonical Hamiltonians for waves Previous: Window transform


Calculation of $ \xi $

In order to calculate $ \xi $ , we solve Eq. (79) Notice that $ \cosh 2\xi >1$ since $ \mu_{ev}>\nu$ . Using the definition of the $ \cosh$ function, we can write
$\displaystyle e^{2\xi}+e^{-2\xi}=2\frac{\mu_{ev}}{\sqrt{\mu_{ev}^2-\nu^2}},$      

and denoting $ t=e^{2\xi}$ , one obtains a quadratic equation for $ t$ with two solutions
$\displaystyle t=\frac{\mu_{ev}\pm\vert\nu\vert}{\sqrt{\mu_{ev}^2-\nu^2}}.$      

After we take into account Eq. (80), we obtain the following expression for $ \xi $
$\displaystyle \xi = \frac{1}{4}\ln{\frac{\mu_{ev}-\nu}{\mu_{ev}+\nu}}.$     (91)



Dr Yuri V Lvov 2008-07-08