next up previous
Next: Calculation of Up: Canonical Hamiltonians for waves Previous: Acknowledgments


Window transform

Let us consider the RHS of Eq. (33) term by term.
1) $ \bf {f_0F_0}$

    $\displaystyle \left(\frac{1}{\sqrt{\pi}}\right)^d\int \hat{f}((\textbf{k}-\text...
...extbf{m})\tilde{a}_{\textbf{p},\textbf{x}_1}d\textbf{p}d\textbf{m}d\textbf{x}_1$  
    $\displaystyle =\left(\frac{1}{\sqrt{\pi}}\right)^d\int \hat{f}((\textbf{k}-\tex...
...{x}}d\textbf{m}=\omega _{\textbf{k}\textbf{x}}\tilde{a}_{\textbf{k}\textbf{x}},$ (87)

2) $ \bf {f_1F_0}$

    $\displaystyle \left(\frac{1}{\sqrt{\pi}}\right)^d\int\textbf{m}\cdot\nabla_\tex...
...}F(\textbf{k},\ae)\tilde{a}_{\textbf{p},\textbf{x}_1}dpd\textbf{m}d\textbf{x}_1$  
    $\displaystyle =-\left(\frac{1}{\sqrt{\pi}}\right)^d\int \hat{f}((\textbf{k}-\te...
...xtbf{m})\tilde{a}_{\textbf{p},\textbf{x}_1} d\textbf{p}d\textbf{m}d\textbf{x}_1$  
    $\displaystyle ~~-\left(\frac{1}{\sqrt{\pi}}\right)^d\int \hat{f}((\textbf{k}-\t...
...textbf{p}\tilde{a}_{\textbf{p},\textbf{x}_1}d\textbf{p}d\textbf{x}_1d\textbf{m}$  
    $\displaystyle =-\textbf{x}\cdot\nabla_\textbf{x}\omega _{\textbf{k}\textbf{x}}\...
... _{\textbf{k}\textbf{x}}\cdot\nabla_\textbf{k}\tilde{a}_{\textbf{k}\textbf{x}},$ (88)

3) $ \bf {f_0F_1}$

    $\displaystyle \left(\frac{1}{\sqrt{\pi}}\right)^d\int \hat{f}((\textbf{k}-\text...
...extbf{m})\tilde{a}_{\textbf{p},\textbf{x}_1}d\textbf{p}d\textbf{m}d\textbf{x}_1$  
    $\displaystyle =-i\left(\frac{1}{\sqrt{\pi}}\right)^d\int \hat{f}((\textbf{k}-\t...
...i\textbf{m}\cdot\textbf{x}}\nabla_\textbf{k}F(\textbf{k},\textbf{m})d\textbf{m}$  
    $\displaystyle +\left(\frac{1}{\sqrt{\pi}}\right)^d\int \hat{f}((\textbf{k}-\tex...
...}\textbf{x}}\textbf{m}\cdot\nabla_\textbf{k}F(\textbf{k},\textbf{m})d\textbf{m}$  
    $\displaystyle =-i\nabla_\textbf{k}\omega _{\textbf{k}\textbf{x}}\cdot\nabla_\te...
...la_{\textbf{x}})\omega _{\textbf{k}\textbf{x}}\tilde{a}_{\textbf{k}\textbf{x}},$ (89)

4) $ \bf {f_1F_1}$

    $\displaystyle \int\textbf{m}\cdot\nabla_\textbf{p}\hat{f}((\textbf{k}-\textbf{p...
...extbf{m})\tilde{a}_{\textbf{p},\textbf{x}_1}d\textbf{p}d\textbf{m}d\textbf{x}_1$  
    $\displaystyle =\int \hat{f}((\textbf{k}-\textbf{p})/\varepsilon^*)ie^{i(\textbf...
...t\textbf{x}}\textbf{m}\cdot\nabla_\textbf{k}F(\textbf{k},\textbf{m})d\textbf{m}$  
    $\displaystyle +\int \hat{f}((\textbf{k}-\textbf{p})/\varepsilon^*)e^{i(\textbf{...
...t\textbf{x}}\textbf{m}\cdot\nabla_\textbf{k}F(\textbf{k},\textbf{m})d\textbf{m}$  
    $\displaystyle +\int \hat{f}((\textbf{k}-\textbf{p})/\varepsilon^*)e^{i(\textbf{...
...t\textbf{x}}\textbf{m}\cdot\nabla_\textbf{k}F(\textbf{k},\textbf{m})d\textbf{m}$  
    $\displaystyle =i(\nabla_{\textbf{k}}\cdot\nabla_{\textbf{x}})\omega _{kx}\textb...
...}(\nabla_{\textbf{k}}\cdot\nabla_{\textbf{x}})\tilde{a}_{\textbf{k}\textbf{x}}.$ (90)


next up previous
Next: Calculation of Up: Canonical Hamiltonians for waves Previous: Acknowledgments
Dr Yuri V Lvov 2008-07-08