next up previous
Next: Evolution of statistics of Up: Wave Turbulence "Recent developments Previous: Weak nonlinearity expansion: four-wave

Asymptotic expansion of the generating functional.

Let us first obtain an asymptotic weak-nonlinearity expansion for the generating functional $ Z\{\lambda, \mu\}$ exploiting the separation of the linear and nonlinear time scales. 3 To do this, we have to calculate $ Z$ at the intermediate time $ t=T$ via substituting into it $ a_j(T)$ from (32) For the amplitude and phase ``ingredients'' in $ Z$ we have,

$\displaystyle e^{\lambda_j \vert a_j\vert^2}= e^{\lambda_j \vert a_j^{(0)}+{\ep...
...ambda_j A_j^{(0) 2}} ( 1+{\epsilon}{\alpha_{1j}} + {\epsilon}^2 {\alpha_{2j}}),$ (33)

and

$\displaystyle \psi_j^{\mu_j}=\left(\frac{a_j^{(0)}+{\epsilon}a_j^{(1)}+{\epsilo...
...}}= = \psi_j^{(0)\mu_j} (1+{\epsilon}{\beta_{1j}} +{\epsilon}^2 {\beta_{2j}} ),$ (34)

where
$\displaystyle {\alpha_{1j}}$ $\displaystyle =$ $\displaystyle \lambda_j(a_j^{(1)}\bar a_j^{(0)}+ \bar a_j^{(1)}
a_j^{(0)}),$ (35)
$\displaystyle {\alpha_{2j}}$ $\displaystyle =$ $\displaystyle {(\lambda_j +\lambda_j^2
A_j^{(0)2}\vert a_j^{(1)}\vert^2 +\lambd...
...frac{\lambda_j^2}{2}(a_j^{(1)}\bar a_j^{(0)})^2 + (\bar
a_j^{(1)}a_j^{(0)})^2},$ (36)
$\displaystyle {\beta_{1j}}$ $\displaystyle =$ $\displaystyle \frac{\mu_j}{2A_j^{(0)2}}(a_j^{(1)}\bar a_j^{(0)}-\bar a_j^{(1)}
a_j^{(0)}),$ (37)
$\displaystyle {\beta_{2j}}$ $\displaystyle =$ $\displaystyle \frac{\mu_j}{2A_j^{(0)2}}(a_j^{(2)}\bar
a_j^{(0)}-\bar a_j^{(2)}a...
...
a_j^{(0)}}\right)^2
\right]-\frac{\mu_j^2\vert a_j^{(1)}\vert^2}{4A_j^{(0)2}}.$ (38)

Substituting expansions (39) and (40) into the expression for $ Z$, we have

$\displaystyle Z\{\lambda, \mu, T\} = X\{\lambda, \mu,T\} + \bar X \{\lambda, - \mu,T\}$ (39)

with

$\displaystyle X\{\lambda, \mu,T\} = X\{\lambda, \mu,0\} + (2 \pi)^{2N} \left<\p...
...^2}[{\epsilon}J_1 +{\epsilon}^2(J_2 +J_3+J_4+J_5)] \right>_A + O({\epsilon}^4),$ (40)

where
$\displaystyle J_1$ $\displaystyle =$ $\displaystyle \left<\prod_l \psi_l^{(0)\mu_l}
\sum_j (\lambda_j
+\frac{\mu_j}{2\vert a_j^{(0)}\vert^2})a_j^{(1)}\bar a_j^{(0)}\right>_\psi,$ (41)
$\displaystyle J_2$ $\displaystyle =$ $\displaystyle {1 \over 2} \left<\prod_l \psi_l^{(0)\mu_l}
\sum_j (\lambda_j+
\l...
...^2-\frac{\mu_j^2}{2\vert a_j^{(0)}\vert^2})\vert a_j^{(1)}\vert^2
\right>_\psi,$ (42)
$\displaystyle J_3$ $\displaystyle =$ $\displaystyle \left<\prod_l \psi_l^{(0)\mu_l}
\sum_j
(\lambda_j + \frac{\mu_j}{2\vert a_j^{(0)}\vert^2})a_j^{(2)}\bar a_j^{(0)}
\right>_\psi,$ (43)
$\displaystyle J_4$ $\displaystyle =$ $\displaystyle \left<\prod_l \psi_l^{(0)\mu_l}
\sum_j
\left[\frac{\lambda_j^2}{2...
...mu_j}{2\vert a_j^{(0)}\vert^2} \right](a_j^{(1)}\bar a_j^{(0)})^2
\right>_\psi,$ (44)
$\displaystyle J_5$ $\displaystyle =$ $\displaystyle {1 \over 2} \left<\prod_l \psi_l^{(0)\mu_l}
\sum_{j \ne k}\lambda...
...)}\bar a_k^{(0)}
-\bar a_k^{(1)}a_k^{(0)})a_j^{(1)}\bar a_j^{(0)}
\right>_\psi,$ (45)

where $ \left< \cdot \right>_A$ and $ \left< \cdot \right>_\psi$ denote the averaging over the initial amplitudes and initial phases (which can be done independently). Note that so far our calculation for $ Z(T)$ is the same for the three-wave and for the four-wave cases. Now we have to substitute expressions for $ a^{(1)}$ and $ a^{(2)}$ which are different for the three-wave and the four-wave cases and given by (34), (36) and (34), (36) respectively.


next up previous
Next: Evolution of statistics of Up: Wave Turbulence "Recent developments Previous: Weak nonlinearity expansion: four-wave
Dr Yuri V Lvov 2007-01-23