next up previous
Next: Bibliography Up: Canonical Hamiltonians for waves Previous: Canonicity conditions for near-identity


Near-identity transformation

Lets us first apply the near-identity transformation to the $ O(1)$ part of the Hamiltonian that is given by Eq. (81)
$\displaystyle \int\omega b^*b~d\textbf{k}d\textbf{x}=\int\omega c^*c+\big(\omeg...
...^*cc_-+\omega \beta ^*c\{\gamma ^*,c_-\}+c.c.\big)d\textbf{k}d\textbf{x}+h.o.t.$      

To apply this transformation to the $ O(\varepsilon )$ part we just need to substitute $ b$ with $ c$ in Eq. (82). The non-diagonal terms cancel in the Hamiltonian if
$\displaystyle \int\big(\sigma+\omega \alpha ^*\big)cc_-+\left(\omega \beta ^*c\...
...,c_-\}+\frac{i\mu_{ev}^2}{2\nu}c\{\varphi,c_-\}\right)d\textbf{k}d\textbf{x}=0.$     (106)

Let us choose
$\displaystyle \gamma =\gamma ^*=\varphi=\frac{\omega _{ev}}{\mu_{ev}}.$     (107)

Then we can rewrite Eq. (116) as
$\displaystyle \int(\sigma+\omega\alpha ^*)cc_-+\left((\omega_{ev}+\omega_{od})\beta^*+\frac{i\mu_{ev}^2}{2\nu}\right)c\{\varphi,c_-\}d\textbf{k}d\textbf{x}=0.$      

Integrating by parts one can show that
$\displaystyle \int\omega_{od}\beta^*c\{\varphi,c_-\}d\textbf{k}d\textbf{x}=\frac{1}{2}\int\{\omega_{od}\beta^*,\varphi\}cc_-d\textbf{k}d\textbf{x}.$      

Therefore, the diagonalizing condition becomes
$\displaystyle \int\left(\sigma+\omega\alpha ^*+\frac{1}{2}\{\omega_{od}\beta^*,...
...\beta^*+\frac{i\mu_{ev}^2}{2\nu}\right)c\{\varphi,c_-\}d\textbf{k}d\textbf{x}=0$      

From Eq. (118), the condition on $ \beta$ immediately follows
$\displaystyle \beta =\frac{i\mu_{ev}^2}{2\nu\omega_{ev}}.$     (108)

In order to obtain the condition on $ \alpha $ , we expand the second term in the integral
$\displaystyle \omega \alpha ^*=\omega_{od}\alpha_{od}^*+\omega_{ev}\alpha_{ev}^*+\omega_{od}\alpha_{ev}^*+\omega_{ev}\alpha_{od}^*.$     (109)

Integral over the last two terms vanishes because these functions are odd. Therefore, we consider only the other two terms. Next, we insert this expansion into Eq. (118)
$\displaystyle \int\left(\sigma+\omega_{od}\alpha_{od}^*+\omega_{ev}\alpha_{ev}^...
...+\left(\omega_{ev}\beta^*+\frac{i\mu_{ev}^2}{2\nu}\right)\{\varphi,c_-\}cdkdx=0$      

Then, we obtain the following diagonalizing conditions on $ \alpha $
$\displaystyle \alpha_{ev}$ $\displaystyle =$ $\displaystyle -\frac{\sigma^*}{\omega_{ev}}-\frac{\beta }{2\omega_{ev}}\left\{\omega_{od},\frac{\omega _{ev}}{\mu_{ev}}\right\},$ (110)
$\displaystyle \alpha_{od}$ $\displaystyle =$ $\displaystyle -\frac{1}{2}\left\{\beta ,\frac{\omega_{ev}}{\mu_{ev}}\right\}.$ (111)

Let us prove that $ \alpha _{od}=0$ . Substituting Eq. (118) into Eq. (121), we obtain
$\displaystyle \alpha _{od}=-\frac{i}{4}\left\{\frac{\mu_{ev}^2}{\nu\omega_{ev}},\frac{\omega_{ev}}{\mu_{ev}}\right\}.$      

Expanding the Poisson bracket we find the following identity
$\displaystyle \left\{\frac{\mu_{ev}^2}{\nu\omega_{ev}},\frac{\omega_{ev}}{\mu_{...
..._{ev}\}+\mu\{\omega _{ev},\nu\}+\omega _{ev}\{\nu,\mu_{ev}\}}{\nu^2\omega_{ev}}$     (112)

According to the definition, $ \omega _{ev}^2=\mu_{ev}^2-\nu^2$ . Differentiation of both sides of the last equality with respect to $ \textbf{x}$ or $ \textbf{k}$ yields
$\displaystyle \nabla\omega _{ev}=\frac{\mu_{ev}}{\omega _{ev}}\nabla\mu_{ev}-\frac{\nu}{\omega _{ev}}\nabla\nu.$     (113)

We use Eq. (123) to show that
$\displaystyle \{\mu_{ev},\omega _{ev}\}$ $\displaystyle =$ $\displaystyle -\frac{\nu}{\omega _{ev}}\{\mu_{ev},\nu\},$  
$\displaystyle \{\omega _{ev},\nu\}$ $\displaystyle =$ $\displaystyle \frac{\mu_{ev}}{\omega _{ev}}\{\mu_{ev},\nu\}.$  

Plugging Eq. (124) into Eq. (122) proves that $ \alpha _{od}=0$ .
next up previous
Next: Bibliography Up: Canonical Hamiltonians for waves Previous: Canonicity conditions for near-identity
Dr Yuri V Lvov 2008-07-08