Past Exams

  1. Consider the PDE
    $\displaystyle u(x,y)\frac{\partial^2}{\partial x\partial y} u(x,y)
=
\frac{\partial}{\partial x} u(x,y)
\frac{\partial}{\partial y} u(x,y).$
    Show that the solution of this PDE is
    $\displaystyle u(x,y)= f(x)g(y)$
    for any differentiable functions $f(x)$ and $g(y)$.
  2. Consider the Laplacian equation
    $\displaystyle \frac{\partial^2}{\partial x^2} u(x,y)
+
\frac{\partial^2}{\partial y^2} u(x,y)
=0.$
    Verify by direct explicit calculation that
    $\displaystyle u_n(x,y) = \sin( n x) \sinh( n y)$
    is a solution for this equation. What are the conditions on constant $n$ should you impose?
  3. Solve the PDE
    $\displaystyle 2\frac{\partial}{\partial x} u(x,t)
+
3\frac{\partial}{\partial t} u(x,t)
=0.$
    with the initial condition
    $\displaystyle u(x,t=0)=\sin(x).$
  4. Find the general solution of the PDE
    $\displaystyle 4\frac{\partial^2}{\partial x \partial t } u(x,t)
+
5 \frac{\partial}{\partial x} u(x,t)
=0.$
    Hint There is a substitution which simplifies this problem considerably.
  5. Find the general solution of the PDE
    $\displaystyle x \frac{\partial}{\partial x } u(x,y)
+
y \frac{\partial}{\partial y} u(x,y)
=0.$
  6. Solve the Partial Differential Equation

    $\displaystyle \frac{\partial^2}{\partial x \partial t } u(x,t)
-
3
\frac{\parti...
...}{\partial x \partial t } u(x,t)
-
4 \frac{\partial^2}{\partial x^2} u(x,t)
=0.$

  7. Consider the solution $u(x,t)$ of the diffusion equation
    $\displaystyle \frac{\partial}{\partial t} u(x,t)
=
\frac{\partial^2}{\partial x^2} u(x,y), u(0,t)=u(L,t)=0.$
    The $x$ is between $0$ and $L$:
    $\displaystyle 0\le x\le L,$
    and $t$ is between $0$ and $\infty$:
    $\displaystyle 0\le t\le \infty.$

  8. Solve the initial value problem for the diffusion equation:
    $\displaystyle \frac{\partial}{\partial t} u(x,t)
=
\frac{\partial^2}{\partial x^2} u(x,y), \ \
u(x,t=0)=\phi(x), \ \ -\infty <x<\infty,$     (1)
    where the $\phi(x) = 1$ for $x>0$ and $\phi(x) = 3$ for $x<0$. Write your solution in terms of the Error function
    $\displaystyle {\rm {Erf}}(x) =\frac{2}{\sqrt{\pi}}\int\limits_0^x e^{-s^2} d s.$
  9. Let $u(x,t)$ satisfy the diffusion equation
    $\displaystyle \frac{\partial}{\partial t} u(x,t)
=
\frac{1}{2}\frac{\partial^2}{\partial x^2} u(x,y),
$
    Define the function $v(x,t)$ as
    $\displaystyle v(x,t) = \frac{1}{\sqrt{t}} e^{\frac{x^2}{2 t}} u(\frac{x}{t},\frac{1}{t}).$
    Show that $v(x,t)$ satisfies the “backward” diffusion equation
    $\displaystyle \frac{\partial}{\partial t} u(x,t)
=-
\frac{1}{2}\frac{\partial^2}{\partial x^2} u(x,y),
$

  10. Consider waves in the resistant medium described by the wave-like PDE
    $\displaystyle \frac{\partial^2}{\partial t^2} u(x,t)
=
\frac{\partial^2}{\partial x^2} u(x,y) -
r
\frac{\partial}{\partial t} u(x,y),$      
    $\displaystyle u(x=0,t) = u(x=L,t) = 0,
u(x,t=0)=\phi(x), \frac{\partial}{\partial x} u(x,t=0) = \psi(x).
\nonumber$      
    Find the general solution in form of a series for this problem if
    $\displaystyle \frac{2 \pi}{L}<r<\frac{4\pi}{L}.$

  11. Consider the diffusion where the material evaporates. The equation is given by
    $\displaystyle \frac{\partial}{\partial t} u(x,t)
=
\frac{\partial^2}{\partial x^2} u(x,y) -
-
u(x,y),$      
    $\displaystyle u(x=0,t) = u(x=L,t) = 0,
u(x,t=0)=\phi(x).
\nonumber$      
    Find the general solution in form of a series for this problem.
  12. Solve the Schroedinger equation
    $\displaystyle \frac{\partial}{\partial t} u(x,t)
= i
\frac{\partial^2}{\partial x^2} u(x,y) -$      
    $\displaystyle u(x=0,t) = u(x=L,t) = 0,
u(x,t=0)=\phi(x).
\nonumber$