(* Thermal diffusivity and domain parameters *) alpha = 0.1; L = 1; (* Length of rod *) tmax = 3; (* Maximum time *) DT=0; (* Heat equation setup *) heatEquation = D[u[t, x], t] == alpha D[u[t, x], {x, 2}]; initialCond = u[0, x] == Exp[-40(x-.5)^2]+0*Sin[nu x]+x DT; (* Initial temperature profile *) boundaryConds = {u[t, 0] == 0, u[t, L] == DT}; (* Fixed temperature at ends *) (* Solve the PDE *) sol = NDSolve[{ heatEquation, initialCond, boundaryConds }, u, {t, 0, tmax}, {x, 0, L}] (* Visualize the solution *) Plot3D[u[t, x] /. sol, {t, 0, tmax}, {x, 0, L}, PlotRange -> All, AxesLabel -> {"Time", "Position", "Temperature"}, ColorFunction -> "TemperatureMap"] (* Animated temperature evolution *) Manipulate[ Plot[u[t, x] /. sol, {x, 0, L}, PlotRange -> {0, 1+DT}, AxesLabel -> {"Position", "Temperature"}, PlotLabel -> Row[{"t = ", t}]], {t, 0, tmax}]