next up previous
Next: About this document ... Up: Renormalized waves and discrete Previous: Renormalized waves and discrete

Bibliography

1
Fermi E., Pasta J. and Ulam S., Studies of nonlinear problems. Los Alamos Scientific Laboratory Report LA-1940 (reprinted in Fermi E. Collected papers Vol II, p 978, U.of Chicago Press, Chicago 1965).

2
For example, Ford J., Phys. Rep., 213, 271, (1992), Toda M., Theory of nonlinear lattice, Springer-Verlag, New York (1989).

3
Carati A., Galgani L., and Giorgilli A., Chaos, 15, 015105, (2005) and references therein.

4
Flach S. and Willis C.R., Phys. Rep. 295, 181 (1998) and references therein.

5
Eleftheriou M. and Flach S. Comments: Physica D, 202, 142 (2005); Choi C.H., et al., Nucl. Acids. Res., 32, 1584, (2004).

6
Aubry S., Kopidakis G. and Kadelburg V., Dyn. Syst. B 1 271 (2001); James G., C. R. Acad. Sci. Paris S´er. I Math. 332 581 (2001).

7
Dauxois T., Ruffo S. and Torcini A., Phys. Rev. E, 56, 6229, (1997); Aoki K. and Kuznezov D., Phys. Rev. Lett., 86, 4029, (2001); Zhao H., et al., Phys. Rev. Lett., 94, 025507, (2005).

8
Cretegny T., et al., Physica D, 121, 109, (1998).

9
Schulman L.S., et al., Phys. Rev. Lett., 88, 224101, (2002); Kastner M., Phys. Rev. Lett., 92, 104301, (2004).

10
Zakharov, V.E., Lvov V.S. and Falkovich G. Kolmogorov Spectra of Turbulence. Springer-Verlag, (1992).

11
We have verified that (i) the choice of various integrators, (ii) initial conditions of spatially more regular structures than random data, do not affect the reported results. We used the 6-th order Yoshida algorithm [18], a 2-nd order symplectic and adaptive RK integrators. We ensured a high degree of accuracy, e.g., the energy is conserved up to the 9-th digit for a runtime $T=10^6$.

12
Poggy P. and Ruffo S., Physica D, 103, 251, (1997).

13
To confirm that the system had reached the thermal equilibrium we monitored $C(t)=N(\sum E_i^2)/(\sum E_i)^2$ where $E_i$ is the energy of the $i$-th particle [8]. The value of $C(t)$ is $O(N)$ when all the energy is concentrated around one site and is $O(1)$ when equipartition is reached. And $C(t)$ had values in the range $1\sim 3$ in our simulations. Also various statistics of the system were verified to ensure that it reached the thermalized state with the Gibbs distribution [19]: (i) $p_i$ of each particle distributed with pdf $\textit{P}(p)\sim
e^{-p^2/(2T)}$, and (ii) $y_i=q_i-q_{i-1}$ distributed with pdf $\textit{P}(y)\sim e^{-(y^2/2+\beta y^4/4)/T}$.

14
Lvov Y., Nazarenko S. Phys. Rev. E, 69, 066608, (2004).

15
Kosevich Yu.A., et al., Europhys. Lett., 66, 21, (2004).

16
Zhang F., et al., Phys. Rev. E, 61, 3541, (2000).

17
Kivshar Y., et al. Phys. Rev. B, 58, 5423 (1998).

18
Yoshida H., Phys. Lett. A, 150, 262, (1990).

19
Landau L., Lifshitz E. Statistical Physics (Course of theoretical physics Vol. 5), Pergamon, Oxford (1958).



Dr Yuri V Lvov 2007-01-16