\% Interpolation examples \% adapted by Yuri Lvov \% Choose Number of points to play with: Number=10; t=linspace(.2,2.3,Number) y=1./t+t.$\hat{\ }$2 a=polyfit(t,y,Number-1) x=linspace(.2,2.3,100); f=1./x+x.$\hat{\ }$ 2; ftilde=polyval(a,x); plot(x,f,'r',x,ftilde,'g',t,y,'mo') \% Shows Function, interpolation and dots on the same plot \% Try unequal spaced points, result is strange t=[.2 .3 .5 .6 1.6 2.3] y=1./t+t.$\hat{\ }$ 2 a=polyfit(t,y,Number-1) x=linspace(.2,2.3,100); f=1./x+x.$\hat{\ }$ 2; ftilde=polyval(a,x); plot(x,f,'r',x,ftilde,'g',t,y,'mo') Number=20; \% This is the classical example producing wiggles t=linspace(-1,1,Number); \% t=-cos((2*(1:Number)-1)*pi./(2*Number)); \% Uncomment the preveous line for C. points y=1./ (1+25* t.$\hat{\ }$ 2); a=polyfit(t,y,Number-1); x=linspace(-1,1,200); f=1./(1+25*x.$\hat{\ }$ 2); ftilde=polyval(a,x); plot(x,f,'r',x,ftilde,'g',t,y,'mo') \% Do the same with SPLINE interpolation \% Type 'help spline' to get more info \% type 'help interp1' to get even more information x = -1:.1:1; y = 1./(1+25*x.$\hat{\ }$ 2); xx = -1:.01:1; yy = spline(x,y,xx); plot(x,y,'o',xx,yy)