next up previous
Next: Four-wave case. Up: Motivation Previous: Motivation

Three-wave case.

The quadratic Hamiltonian of a three-wave system with small scale perturbations on the background of the large scale excitations is given by Eq. (4). In order to show that, we start with a standard three-wave Hamiltonian [10]:
$\displaystyle H_3=\int\Omega _\textbf{k}\vert a_\textbf{k}\vert^2d\textbf{k}+\f...
...ig)\delta^\textbf{k}_{\textbf{l}\textbf{m}} d\textbf{k}d\textbf{l}
d\textbf{m},$     (6)

where $ V$ is an interaction coefficient. Then, the equations of motion for the variable $ a_\textbf{k}$ assume a standard form
$\displaystyle i\dot{a}_\textbf{k}=\frac{\delta H_3}{\delta a_k^*} =
\Omega _{\t...
...extbf{m}^*\delta^\textbf{l}_{\textbf{k}\textbf{m}}\Big) d\textbf{l}d\textbf{m}.$     (7)

Suppose that a large-scale solution of (8) is given by $ C_\textbf{k}$ . We consider a perturbed solution $ a_\textbf{k}=C_\textbf{k}+c_\textbf{k}$ where $ c_\textbf{k}$ is a small-scale perturbation of $ C_k$ . Equation of motion for $ c_\textbf{k}$ attains the following form:
$\displaystyle i\dot{c}_\textbf{k}=\Omega _{\textbf{k}}c_{\textbf{k}}+\int \left...
...f{m}^*)\delta^\textbf{l}_{\textbf{k}\textbf{m}} \right] d\textbf{l}d\textbf{m}.$      

Now, we use the fact that $ C_\textbf{k}$ is a known exact solution for Eq. (9) to obtain
$\displaystyle i\dot{c}_\textbf{k}=\int A(\textbf{k},\textbf{l})c_\textbf{l}d\te...
...f{m}^* \delta^\textbf{l}_{\textbf{k}\textbf{m}} \right]
d\textbf{l}d\textbf{m},$     (8)

where
$\displaystyle A(\textbf{k},\textbf{l})$ $\displaystyle =$ $\displaystyle \Omega _\textbf{l}\delta_\textbf{l}^\textbf{k}+V^\textbf{k}_{\tex...
...xtbf{l}_{\textbf{k},\textbf{l}-\textbf{k}}\right)^*C^*_{\textbf{l}-\textbf{k}},$ (9)
$\displaystyle B(\textbf{k},\textbf{l})$ $\displaystyle =$ $\displaystyle 2V^{\textbf{k}-\textbf{l}}_{\textbf{k},-\textbf{l}}C_{\textbf{k}-\textbf{l}}.$  

Equation (9) corresponds to the following Hamiltonian
$\displaystyle H=\int A(\textbf{k},\textbf{l})c_\textbf{l}c_\textbf{k}^*d\textbf...
...delta^\textbf{k}_{\textbf{l}\textbf{m}}+c.c.]d\textbf{k}d\textbf{l}d\textbf{m}.$     (10)

This appears to be a standard form of the Hamiltonian for the wave system dominated by three wave interactions in the inhomogeneous media. Quadratic in $ c_\textbf{k}$ part of this Hamiltonian is given by (4), while cubic part of this Hamiltonian is a standard three-wave interaction Hamiltonian.
next up previous
Next: Four-wave case. Up: Motivation Previous: Motivation
Dr Yuri V Lvov 2008-07-08